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Introduction 
The incidence of Intra Cerebral Hemorrhage (ICH) 

is increasing nationwide, correlating with an aging and 

vasculopathic population coupled with widespread use 

of anticoagulant and antiplatelet medications.(1) ICH 

accounts for 10-15% of all strokes out of these 40% 

develop Intraventricular Hemorrhage. Presence of IVH 

worsens the short and long term outcomes.(2) Current 

data indicate that hydrocephalus, communicating or 

non-communicating, develops in up to 67% of patients 

with intraventricular extension of ICH.(3,4) 

Hydrocephalus itself may contribute to increased 

mortality following IVH.(5) Hydrocephalus can be used 

as an independent predictor of higher mortality(4,5) and 

worse prognosis.(6) Both immediate and delayed 

hydrocephalus are possible following IVH.(7) In the 

recent years various interventional techniques have 

been used to treat IVH with Hydrocephalus. In spite of 

better monitoring and interventional methods, the long 

term outcomes remain poor and often leads to 

death.While it is well recognized that placement of an 

EVD may be a lifesaving intervention, the benefits can 

be offset by procedural and catheter-related 

complications, such as hemorrhage along the catheter 

tract, catheter malposition, and CSF infection. Despite 

their widespread use, there are a lack of high-quality 

data regarding the best methods for placement and 

management of EVDs to minimize these risks.(8) In 

most centers, EVD use remains at the discretion of the 

treating neurosurgeon while further decisions on 

medical and surgical treatment are guided by clinical-

decision making tools such as the ICH score.(9,10,11)  

The pathophysiology of IVH induced damage and 

inflammatory cascade are not clearly understood. A 

better understanding of the how and why of IVH can 

guide clinician to identify targets for intervention, and 

also provide clues to monitoring IVH associated 

hydrocephalus and neuronal damage. 

In this review we have analyzed the outcomes of 

patients with IVH induced hydrocephalus in a single 

institute over a period of three years. A comparison of 

our findings has been made with that of the existing 

world literature. We have also attempted to reconcile 

the present research findings and come up with a 

unified theory of pathophysiology of IVH induced 

hydrocephalus. It is hoped that with a better 

understanding of pathophysiology, we can bring about 

better intervention and monitoring strategies which can 

ultimately help not only in improving the short and long 

term outcomes but also improve the overall prognosis 

of this dreaded subset of Intra cerebral Hemorrhage. 

 Intraventricular hemorrhage (IVH) is characterized 

by an influx of blood into the ventricles of the brain. It 

has a highly morbid prognosis. Post Traumatic 

Hydrocephalus following Decompressive 

Craniectomy(DC) for Severe Head Injury is one of the 

most frequent complication during the first month 

following DC with incidence ranging from 4 to 30%. 

The cause is attributed to CSF circulatory 

dysfunction.(12)  

 

Materials and Method 
Indication for the insertion of an EVD was 

determined by a constellation of 1 or more of the 

following signs or symptoms: occlusive hydrocephalus, 

presence of IVH, severe mass effect, Glasgow coma 

scale (GCS) 8, need for continuous ICP monitoring for 

an unreliable neurologic exam, or, for administration of 

intraventricular thrombolytics. The decision to place an 

EVD was based on the presumed benefit to the patient 

if survival was likely (typically in patients with ICH 

scores of 3). Placement of an EVD in patients with 

“poor prognosis” ICH scores (4 or 5) was up to the 

discretion of the treating neurosurgeon after discussion 

of risks, benefits, and possible complications of the 

procedure with the family. All EVDs were inserted at 

the Kocher point into the frontal horn of the right lateral 

ventricle, unless it was obliterated by the hematoma, in 

which case a left frontal EVD was placed. 

CSF was monitored every other day for infection 

by removing 2 -3 mL of fluid from the patient and 

sending for culture. Weaning of the EVD took place 

after the following patient conditions were met: 

improved neurologic exam without the need for ICP 

monitoring or, normal ICP after at least 48 hours of 

monitoring without concomitant IVH, serial non 

contrasted CT scans showing clearance of 

intraventricular blood, or resolution of ICH with relief 

of mass effect on the obstruction of CSF at the level of 

the foramen of Monro, cerebral aqueduct, or fourth 

ventricle. EVD height was raised progressively to a 

maximum height of 20 cm above the external acoustic 



Shashivadhanan et al.                                 Intraventricular Hemorrhage induced hydrocephalus: Does EVD Help 

Indian Journal of Neurosciences, July-September,2017;3(3):106-112                                                                      107 

meatus and then clamped for 24 hours. If patients 

tolerated the clamping without progressive headache, 

decline in neurologic exam, and sustained ICPs 20 for 

24 hours, a confirmatory CT scan was obtained to prove 

ventricular stability and then removed. For patients in 

whom EVD weaning and removal was not possible, a 

ventriculoperitoneal shunt (VPS) was placed. 

 

Observation 
A total of 37 cases were included in this study. The 

cases were placed into four groups based on the 

etiology of bleed. They were grouped as 

Hypertensive,(14) Aneurysmal,(10) Traumatic(6) and 

Indeterminate,(7) (Bleed where etiology could not be 

determined based on imaging findings). This 

distribution is given in Chart 1. Majority of cases 

required Neurosurgical intervention within 48 hours of 

presentation. They were further categorized based on 

the severity of IVH as mild, moderate or severe (Table 

1, Chart 2). The Hypertensive group had maximum 

cases in the severe IVH Score Group. The outcomes 

were analyzed on the basis of Glasgow Outcome score 

(GOS) from I to V. Here majority fell in the last two 

categories (Chart 3). Outcomes were further analyzed 

on basis of etiological categories (Chart 4).  

The imaging findings were analyzed and 

abnormalities in addition to IVH were noted and put 

into 6 categories (Table 2). 

 

 
Fig. 1: Schematic Diagram showing the various mechanisms by which Blood and its components cause injury 

to the neural structures which serve as a trigger to Inflammation and subsequent Hydrocephalus 
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Fig. 2: Schematic diagram showing various pathophysiological mechanisms following Intra Ventricular 

hemorrhage leading to development of Hydrocephalus 
 

Table 1: Additional imaging abnormalities in IVH 

Abnormality No of Cases Percentage in % 

Parenchymal Hemorrhage 26 70 

Subdural Hemorrhage 04 10 

Ischemic Infarct 03 8 

Sub Arachnoid Hemorrhage 34 92 

Midline Shift 34 92 

None 02 5 

 

Chart 1: Pie chart showing the four etiologic categories in which IVH cases were grouped 
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System for grading severity of IVH 

 
 

Chart 3: Glasgow outcome following EVD. Mild disability corresponds to I, Moderate to II, Severe to III, 

Vegetative to IV, Death to V 

 
 

Result  
Our results showed that most of the patients who 

were considered for EVD were in poor neurological 

grade and intervention did not improve the outcomes 

very significantly. Patients who were deteriorating 

benefited with EVD in the short term but outcomes 

remained poor. Of the 37 cases operated with EVD 12 

(32%) developed hemorrhage along EVD tract and 10 

(27%) developed features of CSF infection requiring 

intrventricular antibiotic administration. 4 (10%) 

developed blockage of EVD requiring reinsertion of 

fresh EVD. 

 

Discussion 
EVD is an effective interventional modality in the 

armamentarium of the Neurosurgeon to rapidly reduce 

life threatening mass effect. It may translate to 

reduction in morbidity but the outcomes continue to 

remain poor. The reason lies in the fact that the 

pathophysiology of IVH induced hydrocephalus and 

neural damage remains to be poorly understood. We 

reviewed the current body of literature and have come 

up with the following mechanisms of secondary injury. 

Pathophysiology of IVH induced Secondary Injury: 

Hydrocephalus occurs because of increased production, 

inappropriate flow or decreased reabsorption of CSF. 

Barrier-impairment mechanisms leading to 

hydrocephalus, including dysfunctional ependymal 

cells, blood–brain barrier (BBB) and the relevant 

molecular structures. The Volume of bleed and various 

blood components initiate an inflammatory response 

which is implicated in ependymal and BBB 

Dysfunction 

Mechanical mechanism: Both immediate and delayed 

hydrocephalus are possible following IVH(1) Blood-clot 

frequently block cerebral aqueduct or fourth ventricular 

outlet. In case cortical subarachnoid space is blocked 

then tetra ventricular hydrocephalus ensues.(7) In the 

acute onset hydrocephalus, multiple small blood clots 

form throughout the ventricular system, and obstruct 

the pathway through the arachnoid villi into the venous 

sinuses and small blood vessels leading to and from the 

ependymal cells.(13) The quantity of blood clot, duration 

of bleed are contributory factor to the acuteness and 

intensity of hydrocephalus.(14) Acute hydrocephalus 

occurs in one-quarter of Non Aneurysmal –Sub 

Arachnoid Hemorrhage patients. The greater risk in 
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diffuse bleeding appears to be mediated by greater 

cisternal blood volume but not by greater 

ventriculomegaly. Imaging characteristics may aid in 

anticipatory management of hydrocephalus in NA-

SAH.(15) 

Stretching of ventricular ependymal lining causes 

damage to ependymal cell by triggering the cellular 

cascade. Disruption of the ependymal surface (cells and 

their cilia) results in collapse of the cerebral aqueduct 

walls or in aqueductal stenosis and CSF flow 

occlusion.(7)  

Blood components unleash a secondary response 

following release of injury mediators. 

After hemorrhage and hemolysis, hemoglobin is 

released into the extracellular space and subsequently 

exhibits cytotoxic effects, depleting nitric oxide levels 

and increasing the inflammatory response.(16) Gram et 

al. showed that intraventricular hemoglobin induces a 

pro-inflammatory response characterized by increased 

cerebrospinal fluid (CSF) levels of the pro 

inflammatory cytokine tumor necrosis factor-α (TNF-

α), as well as by periventricular brain damage.(17,18) 

There is considerable evidence that hemoglobin and 

hemoglobin degradation products play an important 

role in the pathogenesis of hydrocephalus and brain 

injury following IVH. While much of the effort to 

target this process therapeutically has focused on iron 

chelation, Gram et al. suggested injecting the scavenger 

protein haptoglobin as a way to reduce the effects of 

free hemoglobin.(19) 

Patients with ICH are affected by concomitant 

tissue infarction and increased intracranial pressure 

(ICP) from hemorrhagic mass effect, which negatively 

impacts neurologic outcomes. Intraventricular 

hemorrhage (IVH) is present in approximately 40% of 

patients with ICH and is associated with worse short- 

and long-term outcomes.( 19,20) Lovasik and colleagues 

found that EVD use was significantly associated with a 

lower mortality rate in patients with higher ICH 

volume, lower GCS, and ICH score of 4, as well as 

trends towards lower mortality with IVH and/or greater 

modified Graeb score.(21) EVD utilization can be of 

benefit in a carefully selected sub-group of patients. 

Patients who would otherwise expire without EVD 

placement are instead surviving, but with greater 

modified Rankin Score, in both, short and long-term.  

Within the IVH literature, indications for EVD use 

is compelling: Nieuwkamp et al. demonstrate a 26% 

decrease in IVH mortality associated with EVD 

utilization (78% vs. 58%) through a meta-analysis, but 

no difference in functional outcomes (poor outcomes 

90% vs. 89%).(22)  

Nieuwkamp et al.’s findings are consistent with the 

results of the analysis done by, Brendan P. Lovasik and 

colleagues who also demonstrated trends toward 

positive mortality benefit without overall positive 

functional outcomes benefit.(23)  

Herrick et al. described a mortality benefit towards 

EVD use for primary IVH patients with GCS greater 

than 3 and hydrocephalus.(24) Hwang et al. 

demonstrated an association between EVD use and 

more dismal clinical prognosis, but EVD placement had 

no significant influence on patient outcomes; the 

authors attributed the trends in greater mortality and 

lower functional status to worse prognosis at 

presentation rather than treatment effect.(25) 

Prasad et al. 37 demonstrated through a large meta-

analysis that there may be benefit to surgery in ICH, 

with a 26% risk reduction for mortality and 29% risk 

reduction for poor outcome (functional dependence or 

death).(26) However, no individual trial has shown this 

benefit and ,study heterogeneity limits further 

extrapolation of these meta-analytic results.(27,28,29,30)  

The breakdown of blood into protein free iron is 

considered to one of the main instigating mechanism 

triggering the cascade.(31)  

Ependymal cells lining the ventricles may get damaged 

due to inflammation,(32) or raised intracranial 

pressure.(33)  

IVH leads to failure regulating the transfer of fluid, 

ions and small molecules between the cerebral 

parenchyma and the ventricular fluid, due to injury 

causing dysfunction of the ependymal cells. 

BBB also is important for maintaining the CSF 

protein content and the osmotic pressure in the brain. 

AQP4 Takeuchi and colleagues hypothesized that 

Aquaporin, AQP4, is up regulated in response to iron 

accumulation in the periventricular area to mediate 

hydrocephalus after IVH because AQP4 expression was 

shown to correlate with iron concentration in that 

model, and AQP4 up regulation was inhibited by the 

iron chelator, deferoxamine.(34)  

Fibrosis & Scarring After acute obstructive 

hydrocephalus, inflammation and subsequent scarring 

of the arachnoid granulations are major contributors to 

the secondary reaction, in which the flow of CSF 

through the cerebral aqueduct, fourth ventricular 

outlets, basal cisterns and/or arachnoid granulations, is 

prevented, resulting in communicating 

hydrocephalus.(35)  

Complement activation may also play a role in 

hydrocephalus. However, only when the BBB is 

disrupted or blood extension into the ventricular system 

occurs, are components of the complement system 

(beneficial or detrimental) allowed to pass into the 

ventricular system and possibly induce immune 

reaction in the brain parenchyma, including cell lysis 

and inflammation, leading to hydrocephalus.(36,37)  

Inflammation following IVH is mediated also by 

the transforming growth factor (TGF) family members, 

TGFβ1 and TGFβ2, which are among the most 

abundant and functionally versatile cytokines in the 

mammalian central nervous system (CNS).(38) TGFβ1 

induces upregulation of the cognate genes encoding 

extracellular matrix proteins, such as fibronectin and 
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laminin, which are important mediators of wound 

healing and scar formation.(39)  

The major roles of TGFβ2 are scarring and 

fibrosis.(40,41)  

Heme is degraded in the brain by hemeoxygenase 

(HO) into iron, carbon monoxide and biliverdin, the 

latter of which is subsequently converted to bilirubin by 

biliverdin reductase. Normal ependymal cells take up 

iron from the CSF and prevent iron diffusion to the rest 

of the brain.(6) Thus, destruction of ependymal cells 

following IVH may be one of the causes for increased 

non-protein-bound iron—which is cytotoxic—in the 

CSF, and in turn may increase ependymal cell damage 

and exacerbate patients’ conditions. 

The role of free iron in IVH-induced 

hydrocephalus may be tightly linked to the 

inflammatory response. Complement-mediated 

erythrocyte lysis may expose the CSF and brain to the 

damaging effects of free iron ions.(6,42,43)  

Medition of thrombin's effect through the PAR-1 

pathway is an important contributor to hydrocephalus 

development after IVH. Thrombin-induced 

hydrocephalus was reduced by co-injection of the 

protease-activated receptor 1 (PAR-1) antagonist 

SCH79797. Based on these results, we concluded that 

mediation of thrombin's effect through the PAR-1 

pathway is an important contributor to hydrocephalus 

development after IVH.(44) 

 

Conclusion 
Our study demonstrates that EVD placement in 

HCP reduces mortality in patients with higher ICH 

Volumes, lower GCS and ICH Score of 4.There is no 

improvement in morbidity. World literature supports 

our results. The current body of evidence suggests that 

early evacuation of IVH will help in reducing the 

secondary effects of injury thereby reducing the 

morbidity. Larger multi institutional studies 

incorporating evidence based protocols may help in 

improving patient outcomes.  
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