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A B S T R A C T

Medical image segmentation is a pertinent issue, with deep learning being a leading solution. However, the
demand for a substantial number of fully annotated images for training extensive models can be a hurdle,
particularly for applications with diverse images, such as brain tumors, which can manifest in various
sizes and shapes. In contrast, the recent Feature Learning from Image Markers (FLIM) methodology,
which incorporates an expert in the learning process, has proven to be effective. This approach generates
compact networks requiring only a few images to train the convolutional layers without backpropagation.
In our study, we implement the interactive—technique for image collection plus neural-nets-training
with reference to F.L.I.M, exploring the user’s knowledge. The results underscore the efficacy of our
methodology, as we were able to select a small set of images to train the encoder of a U-shaped
network, achieving performance on par with manual selection and even surpassing the same U-shaped
network trained by backpropagation with all training images. Index Terms—Deep Learning, Brain, Tumor,
Segmentation, Interactive Machine Learning.
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1. Introduction

The gliomas are common brain tumors in grown-up-adults,
with the Glioblastoma (GBM) being the commonest fatal
brain—tumor of the CNS. In 2018-2019, the survival rate
within 5 years following the diagnosis(diagnostic-findings)
was 7% only, with an incidence rate of 2.55 per 100,000
people.1

The use of images is important for the initial diagnosis,
with volume estimation essential for monitoring, investigat-
ing tumor progression, and analyzing the selected treatment.
However, manual annotation is time-consuming, tedious,
and error-prone – facts that have motivated research on
automatic and semi-automatic methods for brain tumor

* Corresponding author.
E-mail address: drvenkateshwararrr@gmail.com (V. Rama Raju).

segmentation.
Two M.R.I/f-M.R.I sequences are employed mostly

and commonly to capture brain/tumor sub-regions:
Fluid Attenuated Inversion Recovery (T2-FLAIR or
simply FLAIR) and the post-gadolinium-based contrast
administration T1 (T1Gd). GBMs generally have an
irregular shape and size, with active vasogenic edema (ED)
on FLAIR and the enhancing tumor (ET) highlighted on
T1GD. In addition to ED and ET, a third sub-region can
also be observed, the necrotic core (NC), typically as a
non-active region in T1Gd, delimited by ET.

Deep Learning (DL) presents the best results among
auto- matic Brain Tumor Segmentation (BTS) techniques.
However, traditional DL training requires many fully
labeled images to train extensive networks and deal
with different tumor appear- ances and other problems,
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such as images ac- quired from different machines and
configurations (e.g., slice thickness).

Dynamic(or functional) learning is one technique that
tries to explain and resolve the enigma, i.e., issue of
finding the minimum set of training images.1,2 However, the
process is usually done with an already predefined model
without relating to visual characteristics or criteria for such
selection, for example, sampling images based on latent
representations.

One way to make the process more appealing is to
reduce the gap between the user knowledge and the learning
loop, such as selecting images. However, to minimize the
subjective aspect of that interaction, it is essential to have
a recommendation based on objective criteria.3 Therefore,
the present work proposes a way of selecting images at
the same time that we learn convolutional filters, differing
from image selection methods such as dynamic-learning.
We apply feature-learning as of image-markers(FLIM)
approach, in which the user draws biomarkers (i.e., bio-
signals signatures) over imageries, and the filters are learnt
as of the computationally marked area-regions (zone-wise)
without backpropagation.4,5

We propose an interactive methodology that learnt
teaches filters as of drawn markers with FLIM. Then, the
user selects another image that fails based on the already
learned filters and objective criterion. The experiments
demonstrate that through the selected data obtains results
consistent with manual selection and superior to the model
trained with all images of the training set.

2. Related Work

2.1. Image selection

As said before, some works use the user only as the
oracle of the annotation, where there is a mechanism
for recommending or sampling data, and the user only
annotates those samples without properly selecting them.
For example, some works measure uncertainty as a
Bayesian problem using a probabilistic model,6,7 and
others estimate uncertainty using distances from data
representations.7,8

Conversely, in contrast various works brought more
relevance to the user, closing the gap between selection and
annotation. For example, in,9 the authors pursued ways of
recommending data linked to visual explanation, even if the
user is still only in the annotation process. In others, the user
is the basis of selecting and annotating the data, selecting
the data according to specific criteria.3 However, most of
those works are related to training the entire network on
each interaction.

2.2. Feature learning from image markers

The FLIM’s preceding mechanisms and workings have
demonstrated that it is possible to use a reduced number

of weakly labeled images (1-8) to learn a shallow feature
extractor (1-3 layers) with a descriptive proce- dure
while maintaining its performance compared to standard
deep learning models. This reduces the human effort to
mark representative class regions in fewer images. With
each marked region as a candidate filter, FLIM learns
convolutional filters directly from those marked regions.

However, most works use visual inspection for the im-
age selection method, which can be subjective and time-
consuming.10,11 Others used clustering methods and direct
2d projection of images but did so on 2d image datasets
for classification and without extracting features from such
images.4,12

Or set a marked image limit. In this work, we limited the
number of images to 8 for a comparison with.11

We employ the interactive image selection only for the
first layer, using the already selected images and drawn
markers from the FLIM step to train the remaining encoder’s
layers.

Figure 2. a presents the criterion used in the selection
perfor- mance for a query image and feature map from one
learned filter (a WT filter in this case). Otsu’s thresholding
binarizes the activation map. The performance is measured
by the Dice score between the ground truth (GT) and binary
feature map. Figure 2.b illustrates the process with examples
of two acti- vations (after binarization), a ‘bad’ and a ‘good’
one. As the name suggests, the ‘bad’ activation misses
parts of the tumor. However, we can generate the ‘good’
activation by selecting this image and learning filters from
it. This ‘good’ activation is significant as it demonstrates
the effectiveness of the learned filter in capturing a more
substantial portion-of-tumor.

3. Materials and Methods

Our methodology followed the process in Figure 1, where
the user selects a first image (0), then marks relevant regions
of the image and generates convolutional filters for the
network encoder using FLIM (1). Such filters are applied
to the remaining training images (2), and then a criterion
is applied to obtain the performance of each remaining
training image for these existing filters (3). Finally, in the
next step, the user can select an image again (4), but now
selecting the image with the worst performance given the
established criterion.

4. Experiments

It is worth mentioning that during the FLIM process, the
user annotates the convolutional filters between the regions
of the brain that it detects (WT or ET). Then, the images
performance are computationally done depending on those
regions, and consequently user selects new images that fails
depending on those regions. Finally, the image selection
loop until all images perform well
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Figure 1: Image selection criteria (a) and examples of good and
bad activation superimposed on the original image (b)

Figure 2: Our interactive approach. Learn filters from image
markers, then select the next image depending on execution of
learned filters.

4.1. Datasets

We used two datasets. The first is a private dataset con-
taining 80 3D images of GBM with two MRI scans (FLAIR
and T1Gd) per patient, and as a second dataset, we used
the BraTS 2020 training dataset (293 samples), using the
FLAIR- T1Gd pair.13 For both datasets, we used the same
preprocessing pipeline.11

We randomly divided the private dataset into 60% for
imparting-training through the neural-nets, plus11% for the
validation/verification, also30%for testing and executing
and implementation. We kept the same amount of training
data (50) for the BraTS dataset and separated the remainder
between validation and testing (10/90%). We separated in
this way to have a large set for testing, aiming to check
whether the selection of images used can generalize well

to the rest of the set.

4.2. Adopted architectural-design

For the architectural-design, we adopted a small 3D U-Net
architecture, sU-Net, containing of 3convolutional-layer‘s
encoder and a symmetrical decoder.11

4.3. Encoder and decoder training

We use two learning methods: F.L.I.M to imparting and
training the encoder and standard backpropagation to train
the decoder. Among the 50 training images, we selected
eight images by the interactive process ofFigure 1 and the
rest of the 50 training images to train the decoder. For
the backpropagation, we applied exact configuration of the
learning rate and optimizer of.11

4.4. Evaluation metrics

We evaluate tumor segmentation into three regions: ET,
Tumor Core (TC), and Whole Tumor (WT). The literature
usually reports the segmentation effectiveness assuming that
WT = ED ∪ ET ∪NC and TC = ET ∪NC. We applied Dice-
Similarity-Coefficient (DSC) to measure efficacy.

4.5. Golden standard models

Deep Medic and nnU-Net models were used as golden
standard models. These models adopt data augmentation,
normalization, and learning rate reduction, providing us
with upper-bound metrics. DeepMedic is a dual-branch
network which was proved to use small amount of memory
while maintaining performance,14 and nnU-Net is a very
relevant network, winning segmentation challenges of the
last two years.15–17

5. Results

The table I presents the performance of the sU-Net model in
the testing set with different image-selecting methods, either
by applying all training imageries through the standard
backpropagation, using FLIM with the user manually
selecting the most diverse images for marking (F.L.I.Mm),
and using the proposed interactive method (F.L.I.M.i). It
is worth mentioning that the methods that used FLIM
froze the encoder, so only the decoder was trained using
backpropagation.

The table shows that the interactive method obtained
the best mean values and lowest standard deviation,
demonstrating the proposed method for selecting a diverse
sub-sample of images for training. The interactive method
saves the user time from manually selecting those images
while reducing the subjective aspect of image selection.
Also, our methodology based on FLIM outperforms the
encoder trained with all training sets using backpropagation,
as demonstrated within the Table—III for Bra-TS data set.
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Furthermore, we verified the model’s performance for
all (∀)for every new image which is selected and therefore
marked, as shown in Figure 3. Note that there is a significant
improvement when adding the second image (the first
image is recommended). Also, for images 3-8, there‘s no
meaningful improve in the model’s performance, that is
because of the first image being very typical and the second
being very difficult, so the gains with the following images
were small. The results also reinforce FLIM’s power in
training encoders with very few images.

Figure 3: Model performance depending on total of encoder’s
training images.

Figure 4 shows the images from the first and second
selec- tions, with the highlighted regions corresponding to
the active regions for WT features. In (a), we have the
image used on the first selection (i = 1) and the region of
its best feature; in (b), we have the second marked image (i
= 2) but with the best feature from the first – that doesn‘t
properly acquire the tumor, indicating why this image is
recommended. In (c), the same image after training with
F.L.I.M.

Note how attention improves from (b) to (c) by using this
image with F.L.I.M. This visual improvement corresponds
with the gains in the final segmentation (of sU-Net) for this
specific image, going from a DSC of 0.01 to 0.65. This gain
also corresponds to the gain of the image selection criteria
of Figure 2, which goes from 0.15 to 0.56.

We can correlate the final image metrics with its perfor-
mance in the image selection criteria and the features
learned in the first layer. Unfortunately, our criteria use the
image’s GT, which prevents us from obtaining a reliable
measure when making an inference from the test imagery
which does‘t have GT. Otherwise, this would be an excellent
tool for using a system in clinical environments, providing
not only the segmentation mask but also to which features it
is related.

Next, we compare our trained model with the gold
standard state-of-the-art models (Table 2 ), with the neural-
nets U-Net performing better, as expected. Yet, findings

Figure 4: Example of sample and binary image from their best
feature: (a) first image, second image with a bad (b) and good
feature. (c)

are nearly to such models, even using around 3% of the
neural-nets/nn. U-Net parameters. Note that our goal is not
to exceed such models since we use a much leaner network
that trains fast (5% of neural-nets/nn. U-Net and 60% of
Deep. Medic training time), but rather to obtain an estimate
of how close (far) our results are to the ones of such massive
networks.

Table 1: Average DSC for different image selection method.

Models ET TC WT
Backpropagation 0.665 ±

0.166
0.734 ±
0.157

0.721 ±
0.104

FLIMm 0.691 ±
0.073

0.733 ±
0.072

0.702 ±
0.109

FLIMi 0.713 ±
0.068

0.810 ±
0.066

0.797 ±
0.065

Table 2: Average DSC of our method against SOTA models for
the GBM dataset.

Models ET TC WT
DeepMedic 0.777 ±

0.056
0.851 ±
0.066

0.792 ±
0.094

nnU-Net 0.798 ±
0.045

0.885 ±
0.058

0.851 ±
0.068

Ours 0.713 ±
0.068

0.810 ±
0.066

0.797 ±
0.065

6. Conclusion

Finding the smallest set-of-images that efficiently trains
a network is a challenge. In the present work, we use
a methodology that selects the training images while
obtaining the convolutional filters from the encoder. The
user draws markers on the selected images, learning
convolutional filters from such markers. Then, the following
training imageries can be selected according to the
execution of the already learned filters. As a result, we
selected a small set of images that trained the encoder
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Table 3: Average DSC of our method against SOTA models for
the BraTS dataset.

Models ET TC WT
Deep Medic 0.777 ±

0.175
0.810 ±
0.196

0.808 ±
0.138

nnU-Net 0.842 ±
0.153

0.884 ±
0.163

0.906 ±
0.089

Ours 0,717 ±
0,223

0,733 ±
0,237

0,789 ±
0,184

Backpropagation 0,717 ±
0,214

0,734 ±
0,239

0,772 ±
0,184

of a U-shaped network, obtaining presentation analogous
to manual selection and surpassing the accomplishment of
neural-net-work imparted/trained with all available images.
We wish to use the methodology for images of other nature
in future work.

7. Source of Funding
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