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A B S T R A C T

CAR T cell therapy is now-a-days employed in treating various varieties of cancer like that Blood
malignancies, solid tumour, peptic cancer etc. Chimeric antigen receptor are created by taking patient T
cells and reprogramming them in a lab to develop a protein or surface that binds to and recognizes particular
antigens or protein molecules found on the outer layer of cancer cells. In CAR there are four basic parts
named as 1) an antigen-binding domain found outside of the cell, 2) a hinge area, 3) A domain across
membranes, and 4) any number of signaling regions within cells. CARs are modular synthetic receptors.
There are three generations of CAR i.e. 1) 1st generation CAR 2) 2nd generation CAR 3) 3rd generation
CAR. CAR T cell therapy is also used in lymphoma, myeloma, in solid tumour such as breast cancer.
Recently ROR-1 CAR T cell is used which support death of tumour cell.
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1. Introduction

Chimeric antigen receptor -T cell treatment has yielded
extremely lasting and successful clinical results, making
it a novel approach.1 Following two or more rounds of
systemic therapy, two products of chimeric antigen receptor
(CAR) T-cells that target CD19 are currently licensed
with the purpose of treating relapsed huge lymphoma
of the B cells in the US furthermore Europe.2 The
form of therapy may be referred to as immunotherapy,
gene therapy, or cancer therapy when T lymphocytes are
genetically modified to express these synthetic receptors
in order to target cancer cells.3 Complete remission
rate (CRR) of B cell acute lymphoblastic leukaemia
(B-ALL) handled with CD19-targeted CAR-T (CAR-T-
19) cells may exceed 90%.4,5 T-cell antigen specificity
determines how well cancer immunotherapy techniques
work. It is possible to genetically alter T-cells that to
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target antigens that are overexpressed in tumors, which
will increase their specificity. Chimeric antigen receptors,
which increase antigen affinity, or modified TCRs (also
known as TCR treatments) can be expressed by the patient’s
own T cells. By overcoming the basic drawbacks of both
peripheral and central tolerance, these strategies produce
T-cells that are more effective at destroying malignancies
without the need for the patient to undergo de novo T-
cell activation.6 For over 20 years, researchers have been
investigating the engineering of T cells to express chimeric
antigen receptors that target tumor antigens.6 Liposomas
of B cells and acute lymphoblastic leukemia are two
hematological malignancies for which CAR-T therapy has
completely changed treatment. Currently, the FDA has
approved two CAR-T cell-based therapies: tisagenlecleucel
and axicabtagene ciloleuce.7,8
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2. CAR T Cell Therapy

A newly developed immunotherapy to a variety and of
tumours is referred to as CAR.9,10 Leukapheresis, or the
isolation of a patient’s peripheral blood, is the first stage
in this treatment. Blood is extracted from patients using a
process known as apheresis, and the constituent parts are
subsequently genetically modified before being reinjected
into the patient. Blood banks currently employ apheresis
to gather platelets and other blood components for the
treatment of various illnesses, such as renal and hematologic
problems. For those who are healthy and patients, it is
therefore considered a safe technique.11

3. CAR Design

The four basic parts of CARs are an expressed target
antigen-binding domain, a hinge area, a transmembrane
domain, and one or more intracellular signaling domains.
CARs are modular synthetic receptors. The CAR’s
extracellular domain is made up of a spacer and an antigen
binding moiety. These antigen-binding molecules may be
natural ligands that bind to their corresponding receptors, a
human Fab fragment chosen from libraries of phage screens,
or a scFv (single-chain fragment variable) produced from
antibodies.12

Figure 1: Structure of CAR

3.1. Antigen binding domain

The part from the CAR that gives selectivity of target
antigen is called the antigen binding domain. Traditionally,
single-chain variable fragments (scFv) are formed by
joining the flexible linker between the variable heavy
(VH) and light (VL) chains of monoclonal antibodies
to generate the antigen-binding domains. Traditionally,
External surface cancer antigens are the target of the scFvs
in CARs, which causes major histocompatibility complex
(MHC)-independent T cell activation. However, it has been
reported that MHC-dependent, T cell receptor (TCR)-mimic
CARs can identify intracellular tumor-related antigens.13

Going beyond simply locating and attaching to the target
area, a number of scFv properties affect CAR working.

For example, the CAR’s affinity and selectivity for its
target epitope are influenced through the mechanism of
conversation between both the VH and VL chains and their
respective positions of the complementarity-determining
domains.14 Since affinity essentially controls CAR function,
affinity is an important antigen-binding domain parameter.
The CAR’s antigen binding affinity must be high enough
to identify antigens on tumor cells, initiate CAR signaling,
and activate T cells, but not so high as to cause activation-
induced T cell division and cause toxicities.15,16 Although
attachment is undoubtedly among the most significant
elements that exacerbate the situation, studies have shown
that even scFvs with comparable attraction may have
differing effects on CAR-T cell activity. Therefore, other
criteria including the position of epitopes and target antigen
quantity, and avoiding scFvs linked to ligand-independent
tonic signaling has to be taken into account to get better
binding of the CAR to the antigen it is pursuing.

3.2. Hinge region

The hinge or spacer region is the extracellular structural
area from which the binding units extend from the
transmembrane domain. The hinge adds length to enable the
antigen-binding domain to reach the targeted epitope and
serves as a flexible means of overcoming steric hindrance.
Crucially, it seems that the hinge that is chosen influences
CAR functionality since variations in the hinge region’s
length and makeup can have an effect on signaling, CAR
creation, flexibility, epitope recognition, and the strength of
activation outputs.17,18 Apart from these effects, it’s been
suggested that the distance between two points plays a vital
role in ensuring sufficient spacing within cells to facilitate
the development of autoimmune synapses.20 Degree of
Structural impediment on the intended cell determine,
in theory, the "optimal" spacer length. Long spacers
offer greater adaptability and enable more efficient entry
to complex glycosylated antigens or membrane-proximal
epitopes, whereas little hinges are better when attaching
membrane-distal epitopes.17,19 In actuality, but still, the
appropriate spacing distance needs to be customized for
every unique antigen-binding domain pair and is frequently
established empirically. The literature is replete with
examples of short spacer CARs (carcinoembryonic antigen
(CEA) and CD19).20 The membrane-proximal epitopes of
ROR1, orphan receptor tyrosine kinase-like,), as alright
as extended spacer CARs (mucin 1 (MUC1)).19 Hinges
sections that are most frequently used are taken from amino
acid arrangement found in CD8, CD28, IgG1, or IgG4.
However, because IgG-originated spacers can interact with
Fcγ receptors, they can promote depletion of CAR-T cells
and hence reduced persistence within vivo.21,22 The spacer
zone can be further engineered based on structural or
functional considerations, or an alternative spacer region
can be chosen to prevent these impacts.
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3.3. Transmembrane domain

The domain of transmembranes is most likely the least well
defined area of all the CAR components. Although data
implies that the domain of transmembrane may potentially
be important for CAR-T cell work, its primary binding the
CAR to the T cell membrane is its function. According
to research, the CAR transmembrane domains specifically
impact the stability and degree of CAR expression. They
can also be involved in signaling or development of
synapse and divide with internal signaling chemical.23–25

The majority of transmembrane domains, such as CD3ζ ,
CD4, CD8α, or CD28, are derived from naturally occurring
proteins. Due of the transmembrane domain’s frequent
changes in response to the demands of the intracellular
signaling domains or the extracellular spacer region, the
impact of different transmembranes on CAR work have
not been thoroughly investigated. Interestingly, as the
CD3ζ domain of transmembrane enables CAR diminishing
and integration into internal TCRs, it may aid in CAR-
mediated T cell initiation.23 The benefits of the CD3ζ
transmembrane domain are greater than those of CARs with
the CD28 transmembrane domain, although CAR stability
is reduced as a result.26 When in contrast to to CARs with
these domains derived from CD28, CD8α transmembrane
and hinge domains on CAR-T cells release fewer TNF
and IFNγ and are less perceptible to activation-induced
cell death (AICD). These data suggest that The cytokine
production and AICD of CAR-T cells are influenced by
the transmembrane domain and hinge region.30 Overall,
research indicates that while CAR expression and stability
may be improved by employing the commonly utilized
CD8α or CD28 Using the frequently used CD8α or
CD28 transmembrane domains may increase stability.
transmembrane domains, correct CAR-T cell signaling may
be best facilitated by connecting the proximal intracellular
domain to the matching transmembrane domain.

3.4. Intracellular signaling domain (s)

Recognising the effects of CAR co-stimulation in order to
produce CAR forms with the ideal Endo domain has gotten
the most focus in CAR engineering, perhaps. 1st generation
CARs with an FcRγ or CD3ζ signaling domain were
created in the late 1990s.27 The overwhelming majority of
CARs depend on CD3γ derived immunoreceptor tyrosine-
based activation patterns to activate CAR-T cells.28 It is
not possible to elicit effective T cell responses only through
the use of these patterns in signaling. These first generation
CARs’ in vitro stability and durability are lacking.29

Clinical trials that shown little to no efficacy confirmed these
findings.30,31

4. Toward blood malignancies: CAR T-Cell therapy

Anti-CD19 CAR T-cells have shown to be remarkably
effective in treating R/R (relapsed or refractory) B-cell
malignancies, including B-cell non-Hodgkin lymphoma
(NHL), acute lymphoblastic leukemia (ALL), and chronic
lymphocytic leukemia (CLL), in both young people’s and
adult individuals. The percentage of complete remissions
in these trials ranged from 70 to 94%.32 Although
CAR T cells focusing CD19 have a remarkably high
response rate in lymphocytic leukemias, antigen escape,
or the disappearance of recognisable CD19 on tumor
cells’ surface, has also have been found in approximately
10–20% of pediatric Cancer patients having CD19-directed
immunotherapy.33 Therefore, the search for more unique
targeted hematology markers is necessary. Concerning
a) myelogenous leukemia (MM), which targets CD138
or B-cell maturation antigen (BCMA)34,35 and b) acute
myelogenous leukemia (AML), which targets CD33 and
CD123, more clinical trials are being conducted.36 The
FDA, EMA, and other regulatory bodies have acknowledged
that the application of CAR T-cells is an innovative
treatment strategy. Actually, the first CAR therapy to hit
the market was "tisagenlecleucel-T" (Kymriah, Novartis),
which is meant for use in young adult and pediatric
patients (ages 3 to 25) with R/R ALL. On August 30,
2017, the FDA approved the product, which comes at a
price of $475,000. Additionally, the FDA is now reviewing
Kymriah’s regulatory status for R/R B-cell ALL and
DLBCL in Europe, as well as for adults with R/R diffuse
large B-cell lymphoma (DLBCL), an aggressive subtype
of NHL. Additionally, Kymriah is being evaluated for
FL (Florida Law), 2nd line DLBCL, CLL, and MM.
On October 18, 2017, the FDA approved "axicabtagene
ciloleucel" (Yescarta, Kite Phama), a second T-cell therapy
that carries a $373,000 price tag, for the patient care
with R/R aggressive B-cell NHL who are not eligible
for autonomous stem cell transplantation (after at least
two lines of systemic therapy). Regretfully, the cost of a
single treatment using these medicines is now rather high.
Yet, it is expected that over the next few years, the cost
would drop drastically as the production scale rises and
businesses lead the way in the creation of artificial or
commercially available CAR T-cell treatment (that doesn’t
need a customized production technique). Furthermore, the
cost of CAR T-cell therapies would not be too high given
that a single therapy can have long-lasting effects in contrast
to other therapies, such as antibodies, which need for
prolonged and expensive care. With the first treatments now
available, the door is now open for additional and better,
quicker, and less expensive options to appear soon.37
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5. CAR T-Cell Therapy towards Solid Tumors

Focusing solid tumors presents a greater difficulty than
focusing hematological malignancies; CAR T-cells must
overcome numerous obstacles. Tumor cells can cease
expressing antigens that T-cells are targeting or lose
the mechanisms that present them due to their genetic
instability. Furthermore, the histopathological features of
the tumor, insufficient "trafficking" of CAR T-cells to
growth sites, the local strong suppressor of immunity
micro environment, tumor variability, and lack of specific
antigens have all contributed to the little success of
adoptive CAR T-cell therapy for solid growth thus
far.38 Using early in vivo models of B-cell cancer, the
significance of co-stimulation in CD-19-focused CAR-T
cell persistence was shown.39 By including a domain of
co-stimulatory area, IL-2 manufacturing and increase in
number upon repeated antigen uncertainty were enhanced.
2nd generation CARs were created with one co-stimulatory
domain in order with the CD3ζ intracellular signaling
domain once it was realized how crucial co-stimulation
is for long-lasting CAR-T cell treatment.40,41 Both 4-
1BB (CD137) and CD28, the two most popular co-
stimulatory domains that have FDA approval, are linked
to significant patient response rates. Upon differentiating
into effector memory T cells, CARs with CD28 domains
predominantly employ aerobic glycolysis, whereas CARs
with the 4-1BB domain differentiate into central memory
T cells and show enhanced mitochondrial biogenesis
and oxidative metabolism. The co-stimulatory domains’
functional and metabolic characteristics are different.42

In numerous hematological malignancies, such as In
multiple myeloma, diffuse large B-cell lymphoma, B-cell
acute lymphoblastic leukemia, and chronic lymphocytic
leukemia, 2nd generation CAR-T cells have shown strong
therapeutic responses in the clinic. Presently, studies
are being conducted to determine the effectiveness of
second generation CAR-T cells in solid tumours, such
as glioblastoma, progressive sarcoma, liver metastases,
mesothelioma, ovarian cancer, and pancreatic cancer.29

A number of different co-stimulatory domains, including
activable T cell co-stimulator (ICOS)43 CD27,44 MYD88
and CD4045 and OX40 (CD134)46 have shown prior
to clinical efficacy; nevertheless, further clinical research
is required. 3rd generation CARs, which combine two
costimulatory domains in series with CD3ζ , are thought
to be produced when co-stimulation through a single
domain results in partial activation.47 Results from prior
to clinical research on third-generation CARs have been
inconsistent. More specifically, compared to 2nd generation
CARs, lung metastasis revealed an improved in vivo anti-
tumor reply and increased cytokine production in lymphoma
when CARs containing CD28 and 4-1BB signaling were
incorporated.48 3rd generation CARs did not demonstrate
any in vivo therapeutic effects in leukemia or pancreatic

cancer models, and they did not outperform 2nd generation
CARs in either type.49,50

6. Safety Considerations for CAR Therapy

Although the utilisation of CAR T cells has demonstrated
remarkable anticancer responses, there are still a number
of safety issues about potential adverse effects. Different
toxicities are seen a limited days or weeks after CAR T-cell
blending, and some can be extremely dangerous.51,52 The
major frequent brief-term side impact of CAR T cell therapy
is CRS, which typically occurs together with neurotoxicity.
Following CD19 CAR-T cell therapy, CRS has been noticed
in 54-91% of individual, with 8.3–43% of individuals
experiencing extreme CRS.53 During the R/R B-ALL phase
II trial, patients who took "tisagenlecleucel" were shown
to have extreme CRS in 47% of cases and neurotoxicity
in 15% of cases.54 During the key trial for aggressive B-
NHL, patients who got "axicabtagene ciloleucel" reported
severe CRS and neurotoxicity in percentages of 13% and
28%, respectively.55 Severe dyspnoea, which often appears
one or two hours after the initial infusion and is frequently
accompanied by bronchospasm, hypoxia, fever, shivering,
hives, coagulopathy, and capillary leak, is the hallmark
of CRS. Activation of CAR T-cells follows detection of
CD19+ tumor or normal B-cells; this leads to the TNF-α,
IL-6, and IFN-γ proinflammatory cytokine release by the
T-cells, lysis of target cells, and other effects that can be
linked to neurotoxicity and clinical signs of CRS. Certain
tumor lysis syndrome symptoms, including hyperuricemia,
hyperkalaemia, hypocalcaemia, hyperphosphatemia, acute
renal failure, increased LDH, acute respiratory failure, and
additionally mortality, may also be linked to CRS. Chest X-
rays can show interstitial pulmonary infiltration or edema
in conjunction with acute respiratory failure. Though the
processes underlying these symptoms are unknown, they
appear to be temporary and reversible without causing long-
term consequences.56

7. Methods to Improve CAR-T Cell Safety in Solid
Tumors

Beyond hematological malignancies, extreme treatment-
related toxicities mostly caused by the on-target/off-tumor
identification represent one more barrier to CAR-T cell
therapy.57 For this new technology, overcoming the toxicity
is critical and has emerged as a center for study. There are
various approaches to improving the security of CAR-T cell
treatment for solid tumours.

8. Application of CAR T Cell

1. When Eshhar and his associates created the 1st

functional CAR T-cells for cancer management in
1989, CAR technology was born (Gross, Waks, &
Eshhar, Citation 1989). In current years, CAR T-
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Table 1: Strategies for enhancing safety of car-t cell therapy

Methodology Stage Ref.
Improving selectivity of
CAR

Choosing a less dangerous
antigen

Growth-specific antigen Clinical trail 58

Aberrantly glycosylated
antigen

Preclinical research 59

TCR-like CAR Preclinical research 60

Combinatorial antigen
targeting

Supplementary signaling Preclinical research 61,62

SynNotch/CAR circulation Preclinical research 63

iCAR Preclinical research 16

Turning sensitivity of scFv Turning the gratitude Preclinical research 15,64

Masked CAR Preclinical research 65

Control CAR-T cell
activity

Restricting CAR expression Transient mRNA CAR Clinical trail 66,67

Switchable CAR-T cell Dimerizing small molecules Preclinical research 68,69

Tumor targeting antibody Preclinical research 70–72

Suicide gene iCasp9 Clinical trail 73

Antibody-mediated depletion Clinical trail 27,74

cell therapy has revolutionized the way that cancer is
treated.

2. The possibly successful treatment for B-cell cancers,
often known as blood malignancies, is CAR T-cell
therapy.

3. Clinical trials against solid tumours, such as ovarian
cancer, neuroblastoma, carcinoma, colorectal cancer,
glioblastoma, sarcoma, and so on, have also been
carried out employing CAR T-cells.75

4. One of the main issues restricting the use of
CAR-T cell therapy is toxicity. Six categories are
used to categorize common toxicities: neurotoxicity,
genotoxicity, immunogenicity, off-target toxicity, on-
target on-tumor toxicity, and on-target/off-tumor
toxicity.76

5. The growth of CAR-T cell therapy for the
management of solid tumours, such as breast cancer,
is encouraged by its effective use in hematologic
malignancies.

6. Recently, the use of ROR1-CAR-T cells demonstrated
cytolytic activity and cytokine release that support
tumor death in 3D micro physiologic tumor models of
TNBC.77

7. In both chronic lymphocytic leukemia and acute
lymphoblastic leukemia, CAR-T cells is used.

8. CAR-T cell therapy in lymphoma
9. CAR-T cell in multiple myeloma

9. List of Abbreviations

TNF: Tumor necrosis factor; ALL: Acute lymphocytic
leukemia; AML: Acute myelogenous leukemia; BCMA: B-
cell maturation antigen; CAR: Chimeric antigen receptor;
CLL: Chronic lymphocytic leukemia; CRS: Cytokine
release syndrome; FL: Florida law; iCAR: Inhibitory

chimeric antigen receptor; iCasp9: Inducible caspase 9; IL:
Interleukin; MM: Multiple myeloma; NHL: Non-hodgkin
lymphoma; TNBC: Triple negative breast cancer; TCR:
T cell receptor; ROR 1: Receptor tyrosine kinase-like
orphan receptor 1; ScFv: Aingle-chain fragment variable;
SynNotch: Synthetic notch receptor; DLBCL: Diffuse large
B-cell lymphoma.

10. Discussion

The provided overview delves into the intricate landscape
of CAR T cell therapy, shedding light on its significance,
mechanisms, applications, and challenges. Here’s a
discussion focusing on key points:

1. Therapeutic potential: CAR T cell therapy represents
a paradigm change in cancer treatment, offering a
highly targeted approach to combatting cancer. By
using the body’s immune system, particular T cells,
and genetically engineering them to recognize and
attack cancer cells, CAR T cell therapy holds immense
promise in achieving durable remissions, particularly
in blood cancer like B-cell lymphoma and acute
lymphoblastic leukemia.75,76

2. Design complexity: The overview elucidates the
intricate design of CARs, emphasizing the importance
of each component - from the antigen-binding domain
to the intracellular signaling domains. This modular
design allows for customization and optimization to
enhance efficacy and specificity while minimizing off-
target effects.

3. Challenges in solid growth: While CAR T cell
therapy has demonstrated amazing success in
blood cancer, its application in solid growth poses
significant challenges. These challenges include
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tumor heterogeneity, antigen loss, immunosuppressive
microenvironments, and limited trafficking of CAR
T cells to growth sites. Overcoming these obstacles
remains a focal point of ongoing research efforts.

4. Safety considerations: Despite its therapeutic
potential, CAR T cell therapy is not without risks.
Cytokine release syndrome (CRS) and toxicity of
neuron are notable adverse events related with CAR
T cell blending. Strategies to mitigate these risks
include selecting safer antigens, controlling CAR-T
cell activity, and incorporating suicide genes for cell
elimination if necessary.27,75,77

5. Future directions: The overview highlights ongoing
efforts to enhance the safety and efficacy of CAR
T cell therapy, particularly in the context of solid
growth. Strategies such as enhancing CAR selectivity,
controlling CAR-T cell activity, and exploring novel
targets hold promise in expanding the applicability of
CAR T cell therapy beyond hematologic malignancies.

In conclusion, CAR T cell therapy represents a
groundbreaking approach in cancer treatment, with
the potential to revolutionize oncology. While challenges
remain, continued research and innovation hold the
key to unlocking the full therapeutic potential of this
transformative therapy.

11. Conclusion

CAR T cell therapy, a form of therapy of immune
system, is a assurance treatment for various cancers
including blood malignancies and solid tumors. Chimeric
antigen receptors are engineered to recognize specific
antigens on cancer cells, enhancing T cell targeting.
CAR-T cell therapy has shown amazing success in
treating relapsed or condensable large B-cell lymphoma
and acute lymphoblastic leukemia (ALL). The therapy
involves genetically changing individual T cells to
describe synthetic receptors targeting cancer cells. The
process involves isolating patient T cells, genetically
changing them in a lab, and reintroducing them into
the patient. CARs consist of four main parts: antigen-
binding domain, hinge region, transmembrane domain,
and intracellular signaling domains. Each part of the
CAR plays a vital role in its function. The antigen-
binding domain provides target particularity, the hinge
region allows acceptability, the transmembrane domain
anchors the CAR to the T cell membrane, and the
intracellular signaling domains activate T cells. CAR T cells
targeting CD19 have displayed significant effectiveness
in treating B-cell cancer. However, antigen escape poses
challenges, necessitating the exploration of alternative
targets such as BCMA for multiple myeloma and
CD33/CD123 for acute myelogenous leukemia. Targeting
solid growth presents challenges including antigen loss
and immunomodulator microenvironments. 2nd generation

CARs with co-stimulatory domains have shown promise
in hematological malignancies, but their efficacy in
solid growth is still under investigation. While CAR T
cells demonstrate anticancer responses, safety concerns
include cytokine release syndrome (CRS) and neurotoxicity.
Strategies to enhance safety include selecting safer antigens,
controlling CAR-T cell activity, and using suicide genes for
cell elimination if necessary. Various strategies are being
explored to improve the safety of CAR-T cell therapy
for solid growth, including enhancing CAR selectivity
and controlling CAR-T cell activity. CAR T cell therapy
has revolutionized cancer treatment, showing promise in
hematologic malignancies and ongoing clinical trials for
solid growth. Challenges such as toxicity and antigen escape
are being addressed to expand its application. In short,
CAR T cell therapy has emerged as a powerful tool in
cancer management, particularly for blood cancer. While
challenges remain, ongoing research aims to enhance its
efficacy and safety, paving the way for broader applications
in oncology.
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